THROMBOXANE B₂ INHIBITS THE PULMONARY INACTIVATION OF PROSTAGLANDIN E₂ IN THE DOG

THOMAS M. FITZPATRICK, LAWRENCE S. FRIEDMAN, PETER A. KOT & PETER W. RAMWELL

Georgetown University Medical Center, Department of Physiology and Biophysics, 3900 Reservoir Road, N.W., Washington, D.C. 20007, U.S.A.

- 1 The systemic vasodepressor response to intravenously administered prostaglandin E₂ (PGE₂, 0.3, 1.0 and 3.0 μg/kg) is potentiated during intravenous infusion of thromboxane B₂ (TXB₂, 1.0 μg kg⁻¹ min⁻¹) in the anaesthetized dog.
- 2 The augmented haemodynamic response returns toward control values following cessation of the TXB₂ infusion.
- 3 The systemic haemodynamic responses to intra-arterially administered PGE_2 , $PGF_{2\alpha}$ and PGI_2 as well as intravenously administered $PGF_{2\alpha}$ and PGI_2 are not altered by TXB_2 infusion.
- 4 This study suggests that TXB₂ inhibits the pulmonary inactivation of PGE₂.
- 5 Arachidonic acid metabolites may interact, producing haemodynamic responses differing from their individual effects.

Introduction

Prostaglandin E₂ (PGE₂), a product of prostaglandin endoperoxide (PGG₂ and PGH₂) isomerization, depresses systemic arterial pressure (SAP) by directly dilating the resistance vessels of the circulation (Nakano & McCurdy, 1967; Malik & McGiff, 1976). Since PGE₂ is approx. 90% inactivated by a single passage through the pulmonary circulation (Ferreira & Vane, 1967) the magnitude of hypotension is dependent upon its route of administration or site of its synthesis. The lungs, therefore, play a strategic role in regulating the concentration of PGE₂ reaching the heart and systemic vasculature.

In addition, depending upon the stimuli, endoperoxides may be converted to several other compounds. Thromboxane A₂ (TXA₂), a potent platelet aggregator and constrictor of vascular smooth muscle (Hamberg, Svensson & Samuelsson, 1975), is a potential product of endoperoxide transformation. Due to structural instability however $(T_{\frac{1}{2}} = 32 \text{ s in aqueous})$ solution), TXA2 quickly converts to the more stable thromboxane B₂ (TXB₂) (Hamberg et al., 1975). It was recently demonstrated that TXB₂ inhibited the pulmonary degradation of PGE₂ when infused through the rat isolated lung (Boura & Murphy, 1978a). Since there is a probable concomitant release of PGE₂ and TXB₂ by the lung during anaphylaxis (Anggard & Samuelsson 1965; Palmer, Piper & Vane, 1973; Dawson, Boot, Cockerill, Mallen & Osborn, 1976; Crutchley, Piper & Seale, 1977) and endotoxin shock (Dusting, Moncada & Vane, 1979) we investigated whether interaction between TXB₂ and PGE₂ occurs in the lungs of intact anaesthetized dogs.

Methods

Mongrel dogs (15 to 20 kg) of either sex were anaesthetized with intravenous sodium pentobarbitone (30 mg/kg). Airway patency was maintained with a cuffed endotracheal tube. A Swan-Ganz catheter was positioned in the pulmonary artery. The distal lumen of this catheter was used for monitoring pulmonary arterial pressure (PAP) and the proximal lumen for injecting test compounds intravenously (i.v.). The right femoral artery was catheterized for measurement of systemic arterial blood pressure. A Cordis 'pig-tail' catheter was inserted through the left femoral artery into the left ventricle for the intra-arterial (i.a.) administration of test compounds. The left femoral vein was catheterized and used for TXB2 infusion.

The extent of PGE₂ inactivation by the lung was determined by measuring the SAP response to intravenous and intra-arterial PGE₂ administered before and during TXB₂ infusion (1 µg kg⁻¹ min⁻¹). Neglecting its own metabolism, we estimated that the TXB₂ blood concentration after a 30 min infusion to be less than 400 ng/ml. This TXB₂ concentration alone produced no change in SAP or PAP.

Initially, control systemic arterial pressure responses to intravenous (0.3, 1.0 and 3.0 µg/kg) and

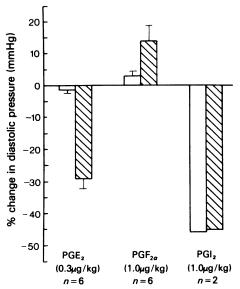


Figure 1 A comparison of the control responses to prostaglandin E_2 (PGE₂*), PGF₂* and PGI₂, when administered by intravenous (open columns) and intraarterial (hatched columns) routes. Vertical bars represent s.e. mean *Significant at P < 0.05.

intra-arterial (0.03, 0.1 and 0.3 μ g/kg) PGE₂ (n=16) were obtained. For purposes of comparison, intravenous (1.0 μ g/kg) and intra-arterial (1.0 μ g/kg) responses to PGI₂ (n=2) and PGF_{2 α} (n=6) were also measured

In order to establish whether the effect of TXB_2 was reversible, PGE_2 (n = 6) (i.v. 1 μ g/kg) was administered at 5 min intervals following termination of the TXB_2 infusion.

Stock solutions of TXB₂, PGI₂, PGE₂ and PGF_{2α} were prepared in ethanol (1 mg/ml) and stored at -20° C. Solutions of PGE₂, PGF_{2α} and PGI₂ were dried under nitrogen and diluted to concentrations of 10 µg/ml (i.a. PGE₂) and 100 µg/ml (PGI₂, PGF_{2α} and intravenous PGE₂) with isotonic saline. TXB₂ was prepared in a similar manner at concentrations that varied in proportion to the weight of the dog.

Data were analyzed by Student's t test for paired data. A P < 0.05 was considered significant.

Results

Control percentage changes in systemic arterial diastolic blood pressure to intravenously and intraarterially administered PGE_2 , $PGF_{2\alpha}$ and PGI_2 are compared in Figure 1. PGE_2 responses, compared at 0.3 µg/kg, represent the only common intravenous and intra-arterial dose level employed. The systemic

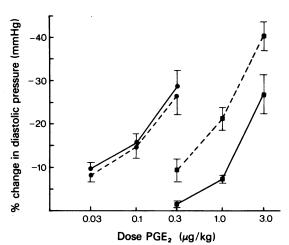


Figure 2 Log dose-responses to prostaglandin E_2 (PGE₂) administered intravenously (\blacksquare) and intraarterially (\bullet) before (——) and during (----) infusion of thromboxane B_2 . Vertical bars represent s.e. mean.

hypotensive action of PGI_2 was the same by either route of administration. In contrast, both PGE_2 and $PGF_{2\alpha}$ elicited a significantly (P < 0.05) greater response when administered intra-arterially.

Figure 2 shows the log dose-responses to intravenous and intra-arterial administration of PGE_2 before and during the infusion of TXB_2 . The systemic depressor response to intravenous PGE_2 was significantly (P < 0.05) augmented at each of the three dose levels tested. However, the log dose-responses to intra-arterial administration of PGE_2 were unaffected by the TXB_2 infusion.

To determine whether the effect of TXB_2 was specific for PGE_2 , the systemic arterial diastolic pressure responses to PGE_2 , $PGF_{2\alpha}$ and PGI_2 were compared before and during TXB_2 infusion. Figure 3 illustrates the percentage change in arterial diastolic pressure elicited by intravenous bolus injections (1.0 $\mu g/kg$) of each of the three test compounds. Only the systemic arterial diastolic pressure response of PGE_2 was significantly (P < 0.05) augmented during TXB_2 infusion.

The ability of TXB_2 to potentiate the systemic hypotensive action of intravenously administered PGE_2 was rapidly reversible. In six animals PGE_2 (1.0 µg/kg) was administered before, during and at 5 min intervals following termination of the TXB_2 infusion. Within 5 min after stopping the TXB_2 infusion, the systemic depressor response elicited by PGE_2 was significantly (P < 0.05) diminished and continued to be reduced during the subsequent 15 min (Figure 4). At 20 min after the end of the TXB_2 infusion, the PGE_2 response was not significantly different from control.

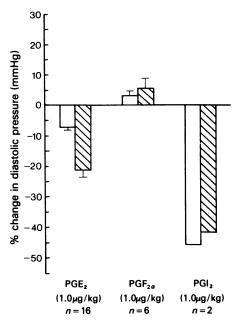


Figure 3 Comparison of response to intravenously administered prostaglandin E_2 (PGE*), PGF_{2 α} and PGI₂ before (open columns) and during (hatched columns) infusion of thromboxane B_2 (TXB₂). The difference in PGF_{2 α} response is not significant. Vertical bars represent s.e. mean *Significant at P < 0.05.

Discussion

The magnitude of the systemic arterial depressor response to PGE₂ when administered intra-arterially is normally several times greater than the response elicited by an equivalent dose administered intravenously (Waldman, Alter, Kot, Rose & Ramwell, 1978). The i.a.-i.v. difference is explained by 15-prostaglandin dehydrogenase (15-PGDH)-mediated degradation in the lung (Ferreira & Vane, 1967; Anggard & Samuelsson, 1967). 15-PGDH is not unique to the lung but its presence there is important in regulating the concentration of several prostaglandins that affect the heart and systemic circulation.

The present study demonstrates that the systemic vasodepressor response produced by intravenous PGE₂ is augmented in the intact canine circulation during TXB₂ infusion. The shift of the log doseresponse to intravenous PGE₂ suggests that greater concentrations of this substance are reaching the systemic circulation.

However, TXB₂ does not alter the vascular response to intra-arterially administered PGE₂ and the duration of the potentiated PGE₂ response was similar to that of the control response. Furthermore, peripheral inactivation of PGE₂ appears to be unaffected

by TXB_2 and the potentiating action appears specific for PGE_2 since TXB_2 does not affect the SAP responses of $PGF_{2\alpha}$ and PGI_2 .

Induction of pulmonary PGE₂ synthesis by TXB₂ could account for the augmented vascular response that we observed. However, Boura & Murphy (1978a) have demonstrated that TXB₂ does not increase prostaglandin release when perfused through the isolated lung of the rat.

Reduced synthesis of the inactivating enzyme 15-PGDH could also account for the increased responsiveness to PGE₂. For instance, rats pretreated with cycloheximide, an inhibitor of 15-PGDH synthesis, demonstrate a reduced inactivation of PGE₂ (Boura & Murphy, 1978b). Since the potentiated response to PGE₂ is significantly reversed within 5 min after termination of the TXB₂ infusion it seems unlikely that 15-PGDH synthesis could be inhibited and re-established within that short time.

TXB₂ itself, is not a substrate for 15-PGDH (Roberts, Sweetman, Morgan, Payne & Oates, 1977), yet it may interfere with the carrier-mediated intracellular prostaglandin transport mechanism postulated by Bito, Wallenstein & Baroody (1976). Blockade, competition or saturation of this process in the pulmonary vasculature by TXB2 would potentiate intravenously administered PGE₂. Probenecid, an organic acid transport inhibitor reduces the inactivation of PGE₂ in the rat (Bito & Baroody, 1975; Boura & Murphy, 1978b) and dog lungs (Wicks, Ramwell, Kot & Rose, 1978). In addition, clinical indicator dyes such as indocyanine green, sulphobromophthalein, phenol red, Evans blue, methylene blue and bromcresol green once considered inert compounds, inhibit PGE₂ inactivation in isolated lung preparations of the rat (Bito & Baroody, 1975; Bakhle, 1978).

Furthermore, although PGI₂ is a substrate for 15-PGDH in lung homogenate (McGuire & Sun, 1978) and intact liver (Wong, Sun & McGiff, 1979) it is unaffected by transit through the pulmonary circulation (Dusting, Moncada & Vane, 1978a). It has been postulated that a transmembrane transport system for PGI₂ is lacking in the lung (Dusting, Moncada & Vane, 1978b). This would explain why TXB₂ did not affect the PGI₂ vasodepressor response.

Whatever the mechanism by which TXB₂ is acting, it is the first substance of endogenous origin found to be able to inhibit the pulmonary inactivation of PGE₂ in an intact animal.

Prostacyclin is the major arachidonic acid metabolite produced by the lung under physiological conditions (Dusting et al., 1979; Mullane, Dusting, Salmon, Moncada & Vane, 1979). There are circumstances however when the pulmonary production of other AA metabolites increases. Although elevated blood levels of PGE₂ and TXB₂ have yet to be conclusively measured simultaneously in the same ani-

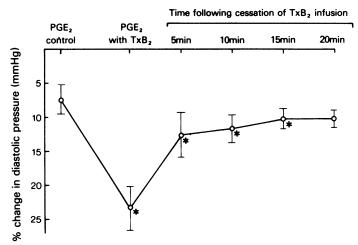


Figure 4 A comparison of the depressor response to prostaglandin E_2 (PGE₂, i.v. 1 μ g/kg) before, during and at 5 min intervals following cessation of thromboxane B_2 (TXB₂) infusion. Vertical bars represent s.e. mean; n = 6 *Significantly different from control at P < 0.05.

mal, PGE₂ is elevated in the dog (Anderson, Jibiz, Fralios, Tsagaris & Kuida, 1972) and baboon (Fletcher, Ramwell & Herman, 1976) following endotoxin shock. Frolich, Ogletree & Brigham (1979) recently found a marked increase of TXB₂ (>200 ng/ml) in the lung lymph of sheep and Harris, Zmudka, Maddox, Ramwell & Fletcher (1979) reported elevated plasma TXB₂ (maximum 2260 ng/ml) in the conscious baboon following endotoxin shock. These studies lead us to speculate that under some pathophysiological conditions, large enough quantities of TXB₂ may be produced to inhibit partially the pulmonary degradation of PGE₂. Their interaction would result in the augmented systemic hypotension we have observed.

In conclusion, our study demonstrates: (1) TXB₂ augments the systemic vasodepressor response of in-

travenously administered PGE₂ in the intact dog, (2) TXB₂ appears to inhibit specifically the pulmonary inactivation of PGE₂, (3) inhibition of PGE₂ pulmonary degradation by TXB₂ is reversible. Possibly of greatest significance, it is important to observe potential interactions between arachidonic acid metabolites. The biological activity of the combined compounds may differ from that of the individual components.

This work was supported by U.S.P.H.S. grant HL-18718 and U.S.P.H.S. Training grant HL-07213. We want to thank Yvonne Maddox, Debbie Holden and Stephen Moore for their technical assistance as well as Ellen Costello for her excellent editorial assistance and Amy Hogan for her secretarial skills.

TXB₂, PGF_{2a}, PGI₂ and PGE₂ were generously supplied by the Upjohn Company.

References

ANDERSON, F.L., JIBIZ, W., FRALIOS, A.C., TSAGARIS, T.J., & KUIDA, H. (1972). Plasma prostaglandin levels during endotoxin shock in dogs. *Circulation*, 45, 11–124.

ANGGARD, E. & SAMUELSSON, B. (1965). Biosynthesis of prostaglandins from arachidonic acid in guinea pig lung. Prostaglandins and related factors. J. biol. Chem., 240, 3518-3521.

ANGGARD, E. & SAMUELSSON, B. (1967). The metabolism of prostaglandins in lung tissue. In *Nobel Symposium*, Vol 2, *Prostaglandins*. ed Bergstrom, S. & Samuelsson, B., New York: Interscience.

BAKHLE, Y.S. (1978). Clinically-used dyes are inhibitors of prostaglandin E₂ inactivation in the isolated lung. *Br. J. Pharmac.*, **64**, 386P.

BITO, L.Z. & BAROODY, R.A. (1975). Inhibition of pulmonary prostaglandin metabolism by inhibitors of prostaglandin biotransport (probenecid and bromcresol green). *Prostaglandins*, 10, 633-639.

BITO, L.Z., WALLENSTEIN, M. & BAROODY, R. (1976). The role of transport processes in the distribution and disposition of prostaglandins. In *Advances in Prostaglandin and Thromboxane Research*, Vol 1, ed. Samuelsson, B. & Paoletti, R. pp. 297–303. New York: Raven Press.

BOURA, A.L.A. & MURPHY, R.D. (1978a). Thromboxane B₂ inhibits prostaglandin E₂ inactivation by the rat isolated perfused lung. Clin. exp. Pharmac. Physiol., 5, 387-392.

- BOURA, A.L.A. & MURPHY, R.D. (1978b). Some factors affecting inactivation of prostaglandin E₂ (PGE₂) by the rat isolated perfused lung. *Br. J. Pharmac.*, 62, 411P.
- CRUTCHLEY, D.J., PIPER, P.J. & SEALE, J.P. (1977). The nature of prostaglandin-like substances released from guinea-pig lungs in anaphylaxis. Eur. J. Pharmac., 44, 319-323.
- DAWSON, W., BOOT, J.R., COCKERILL, A.F., MALLEN, D.N.B. & OSBORN, D.J. (1976). Release of novel prostaglandins and thromboxanes after immunological challenge of guinea-pig lung. *Nature*, 262, 699-702.
- Dusting, G.J., Moncada, S. & Vane, J.R. (1978a). Disappearance of prostacyclin (PGI₂) in the circulation of the dog. *Br. J. Pharmac.*, **62**, 414P.
- Dusting, G.J., Moncada, S. & Vane, J.R. (1978b). Recirculation of prostacyclin (PGI₂) in the dog. *Br. J. Pharmac.*, **64**, 315–320.
- Dusting, G.J., Moncada, S. & Vane, J.R. (1979). Prostaglandins, their intermediates and precursors: cardiovascular actions and regulatory roles in normal and abnormal circulatory systems. *Prog. Cardiovasc. Dis.*, 21, 405–430.
- Ferreira, S.H. & Vane, J.R. (1967). Some factors affecting inactivation of prostaglandin E₂ (PGE₂) by the rat isolated perfused lung. *Br. J. Pharmac.*, 62, 411P.
- FLETCHER, J.R., RAMWELL, P.W. & HERMAN, C.M. (1976). Prostaglandins and the hemodynamic course of endotoxin shock. J. Surg. Res., 20, 589-594.
- FROLICH, J.C., OGLETREE, M., & BRINGHAM, K.L. (1979). Pulmonary hypertension correlated to pulmonary thromboxane synthesis. Fourth International Prostaglandin Conference, Washington, D.C. Abstract 38.
- HAMBERG, M., SVENSSON, J. & SAMUELSSON, B. (1975). Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. *Proc. natn. Acad. Sci. U.S.A.*, 72, 2994–2998.
- HARRIS, R.H., ZMUDKA, M., MADDOX, Y., RAMWELL, P.W., & FLETCHER, J.R. (1979). Relationships of TXB₂ and 6-keto-PGF₁₂ to the hemodynamic changes during

- baboon endotoxic shock. In Advances in Prostaglandin and Thromboxane Research, Vol. 7, ed. Sammuelsson, B., Ramwell, P.W. & Paoletti, R. pp. 843–849. New York: Raven Press.
- McGuire, J.C. & Sun, F.F. (1978). Oxidation by Rhesus Monkey Lung 15-Hhydroxyl Prostaglandin Dehydrogenase. *Arch. Biochem. Biophys.*, **189**, 92-96.
- MALIK, K.U. & McGIFF, J.C. (1976). Cardiovascular actions of prostaglandins. In Advances in Prostaglandins. Physiological, Pharmacological and Pathological Aspects, Vol 3. ed. Karim, S.M.M. pp. 103-104. Lancaster: M.T.P. Press, Ltd.
- MULLANE, K.M., DUSTING, G.J., SALMON, J.A., MONCADA, S. & VANE, J.R. (1979). Biotransformation and cardiovascular effects of arachidonic acid in the dog. Eur. J. Pharmac., 54, 217-228.
- NAKANO, J. & McGurdy, J.R. (1967). Cardiovascular effects of prostaglandin E₁. J. Pharmac. exp. Ther., 156, 538-547.
- Palmer, M.A., Piper, P.J. & Vane, J.R. (1973). Release of rabbit aorta contracting substance (RCS) and prostaglandins induced by chemical and mechanical stimulation of guinea-pig lungs. *Br. J. Pharmac.*, 49, 226–242.
- ROBERTS, L.J. 2d, SWEETMAN, B.J., MORGAN, J.L., PAYNE, N.A. & OATES, J.A. (1977). Identification of the major urinary metabolite of thromboxane B₂ in the monkey. *Prostaglandins*, 13, 631-647.
- WALDMAN, H.M., ALTER, I., KOT, P.A., ROSE, J.C. & RAM-WELL, P.W. (1978). Effect of lung transit on systemic depressor responses to arachidonic acid and prostacyclin in dogs. J. Pharmac. exp. Ther., 204, 289-293.
- WICKS, T.C., RAMWELL, P.W., KOT, P.A. & ROSE, J.C. (1978). Inhibition of prostaglandin-induced pulmonary vasoconstriction by organic acid transport inhibitors. Proc. Soc. exp. Biol. Med., 157, 677-680.
- Wong, P.Y.-K., Sun, F.F. & McGiff, J.C. (1978). Metabolism of prostacyclin in blood vessels. *J. biol. Chem.*, **253**, 5555.

(Received September 7, 1979.)